

BALL SPLINE

BALL **SPLINE**

Ball Spline are shaft guides used for precise guidance of linear movements. They consist of a shaft with multiple pairs of longitudinal grooves and a ball spline nut. The nut contains ball cages filled with steel balls. They roll along the longitudinal grooves of the ground shaft and thus enable precise linear movements. Due to the angular arrangement of the force-transmitting elements, Ball Spline can absorb both radial forces and torque loads.

DOWNLOADS AND **APPLICATIONS**

CAD configurator

Contents

Contents

1. Product overview

Linear Ball Spline **[Page 9](#page-8-1)**

- Different nut types available
- Linearly freely movable
- Torque and radial load transmission
- With solid or hollow shaft
- Nominal diameter 13 32mm

Ball Screw Spline **[Page 11](#page-10-0)**

- Driven flange nuts
- Shaft with Ball Spline nut and Ball Screw nut
- With solid or hollow shaft
- Nominal diameter 16 32mm

Features

2. Features

The HIWIN Ball Spline is an anti-rotation shaft guide consisting mainly of a nut filled with steel balls and a shaft with several longitudinal grooves arranged in pairs. The steel balls roll in the raceways between the nut and shaft in a closed circuit and enable the nut to move along the shaft with low friction and high precision. The angular contact between the steel balls and the raceway in the nut and shaft enables radial forces and torques to be absorbed. Thanks to the integrated nut/bearing design, the Ball Spline can achieve high payloads with a compact design.

The Ball Spline has three sets of steel balls loaded in retainers, with face-to-face angular contact with the screw shaft. The optimized retainer design provides precise guided movement with high speed, acceleration and deceleration and secures the steel balls firmly, even when the nut is removed from the shaft.

{ **Transmission of torque**

The steel balls traveling on the groove with angular contact offer relative movement between the nut and the screw to achieve torque transmission

{ **Integral structure**

The integration of the nut and support bearings allows the Ball Spline to achieve high precision and a compact design

{ **Lubricant path**

The optimized lubricant path allows grease to be directly guided to the ball track improving lubrication and increasing service life

3. Introduction of Ball Spline

3.1 Linear Ball Spline

Cylinder type (RS type)

Flange type (FS type)

Rotary type (FSR type)

Introduction of Ball Spline

3.1.1 Technical structure

3.2 Ball Screw Splines (FBR type)

3.2.1 Technical structure

Ballscrew nut Ball spline nut

Selecting procedure of Ball Spline

4. Selecting procedure of Ball Spline

5. Calculation methods

5.1 Strength design of spline shaft

The Ball Spline can absorb radial loads and torsions. Sufficient strength of the Ball Spline must be ensured by calculating the load-bearing capacity and structural safety, especially in the case of high combined loads.

5.1.1 Spline shaft subjected to bending

When bending moments act on the spline shaft of the Ball Spline, the most suitable spline diameter can be calculated according to formula F 5.1:

Fig. 5.1 **Schematic diagram of splines subjected to bending moments**

5.1.2 Spline shaft subjected to torsion

When torsions act on the Ball Spline shaft, the most suitable spline diameter can be calculated according to formula $F 5.2$:

F 5.2 $T = \tau_a \times Z_p$... $Z_p = \frac{T}{q}$ \therefore Z_p = $\frac{1}{\tau_a}$

Fig. 5.2 **Schematic diagram of splines subjected to torques**

- M Maximum torque acting on spline shaft [Nmm]
- σ Allowable bending stress of spline shaft (98 N/mm2)
- Z Axial section modulus of the shaft $(5.77 \times 10^2 \text{ mm}^3$ for specification SP20)

- T Maximum torque [Nmm]
- τ_a Allowable torsional stress on the spline shaft (49 N/mm²)
- Z_p Polar section modulus of the shaft (specification 20 is 1.15×10^3 mm³)

5.1.3 Spline shaft subjected to bending and torsion simultaneously

If the shaft is subjected to bending and torsional loads simultaneously, the required shaft diameter must be calculated separately for the equivalent bending moment (M_e) and for the equivalent torsional moment (I_e) . The values must be compared and the larger of the two calculated shaft diameters must be used.

Equivalent bending moment

F 5.3

F 5.4

$$
M_e = \frac{M + \sqrt{M^2 + T^2}}{2} = \frac{M}{2} \left\{ 1 + \sqrt{1 + \left(\frac{T}{M}\right)^2} \right\}
$$

$$
M_e = \sigma \times Z
$$

Equivalent torque

$$
T_e = \sqrt{M^2 + T^2} = M \times \sqrt{1 + \left(\frac{T}{M}\right)^2}
$$

$$
T_e = \tau_a \times Z_p
$$

5.1.4 Rigidity of the spline shaft

Rigidity of the spline shaft is indicated by the torsional angle of the spline shaft of length 1m, which is limited to about 0.25°.

F5.5	$\theta = 57.3 \times \frac{T \times L}{G \times I_p}$	θ Torsional angle $[\circ]$
Right of spline shaft [mm]	$\frac{1}{27.3 \times 10^{10} \text{ kg/h}} = \frac{10 \times 1000}{10 \times$	

Fig. 5.3 **Schematic diagram of rigidity of the spline shaft**

- θ Torsional angle [°]
- L Length of spline shaft [mm]
- G Shear modulus $(7.9 \times 104 \text{ N/mm}^2)$
- Ip Polar moment of inertia
-

5.1.5 Bending and bending angle of the spline shaft

The bending and bending angle of the ball spline shaft must be determined by calculation using the formulas corresponding to the actual load conditions.

Calculation methods

5.1.6 Section characteristics of spline shafts

5.1.7 Critical velocity of the spline shaft

When the ball spline shaft is driven by a motor and the rotation speed of the spline shaft increases closely to the resonance frequency, the mechanical stress on the ball spline increases significantly and can lead to bad running performance, vibration and even mechanical failure

Critical velocity

- N_c Critical velocity [min⁻¹]
- l_b Distance between installation surfaces [mm]
- E Modulus of longitudinal elasticity $[2.06 \times 10^5 \text{ N/mm}^2]$
- I Minimal geometrical moment of inertia [mm4]
- γ Density (specific center of gravity) [7.85 \times 10⁵ kg/mm³]
- A Spline shaft cross-sectional area [mm²]
- λ Factor according to the installation method
	- 1 Fixed not fixed: $\lambda = 1.875$ (see [Fig. 5.4\)](#page-15-0)
	- 2 Supported not supported: $\lambda = 3.142$ (see [Fig. 5.5\)](#page-15-1)
	- 3 Fixed supported: $\lambda = 3.927$ (see [Fig. 5.6\)](#page-16-1)
		-
	- 4 Fixed fixed: $\lambda = 4.73$ (see [Fig. 5.7](#page-16-2))

Fig. 5.4 **Schematic diagram of spline shaft: fixed – free**

Fig. 5.5 **Schematic diagram of spline shaft: supported – supported**

Fig. 5.6 **Schematic diagram of spline shaft: fixed – supported**

Fig. 5.7 **Schematic diagram of spline shaft: fixed – fixed**

5.2 Predicting life

5.2.1 Rated life

The life of a Ball Spline can vary considerably even if it is manufactured from the same batch and used under the same motion conditions. Therefore, as a basis for calculating the life of a linear motion system, use the rated life as defined below. The rated life is the total running distance that can be achieved by having a batch of identical linear motion systems moving separately under the same conditions, 90% of which do not show metal fatigue.

Fig. 5.8 Schematic diagram of the Ball Spline subjected to stress

The running of the Ball Spline can be divided into three types of torsions, radial loads and moments. The respective rated life can be obtained according to \underline{F} 5.7, \underline{F} 5.8, [F 5.9](#page-17-0) and [F 5.10.](#page-17-1) (The basic rated load in each direction of load is recorded in the dimensional table of each model number.)

When subjected to torque load

$$
\mathsf{F} \mathsf{5.7} \qquad \mathsf{L} = \left(\frac{\mathsf{f}_{\mathsf{T}} \times \mathsf{f}_{\mathsf{C}}}{\mathsf{f}_{\mathsf{W}}} \times \frac{\mathsf{C}_{\mathsf{T}}}{\mathsf{T}_{\mathsf{C}}} \right)^3 \times 50
$$

When subjected to radial load

$$
\mathsf{F} \, \mathsf{5.8} \qquad \mathsf{L} = \left(\frac{\mathsf{f}_{\mathsf{T}} \times \mathsf{f}_{\mathsf{C}}}{\mathsf{f}_{\mathsf{W}}} \times \frac{\mathsf{C}}{\mathsf{P}_{\mathsf{C}}} \right)^3 \times 50
$$

- L Rated life [km]
- C_{I} Basic dynamic rated torque [Nm]
- T_C Calculated value of applied torque [Nm]
- C Basic dynamic rated load [N]
- P_C Calculated value of radial load [N]
- $f_{\overline{1}}$ Temperature coefficient (see [Fig. 5.9 on Page 18](#page-17-2))
- f_C Contact coefficient (see [Table 5.3 on Page 18\)](#page-17-3)
- f_W Load coefficient (see [Table 5.4 on Page 19\)](#page-18-0)

Calculation methods

When subjected to both torsional and radial loads simultaneously, the

equivalent radial load can be calculated according to formula F 5.9 and then the life can be calculated.

F 5.9

$$
P_E = P_C + \frac{4 \times T_C \times 10^3}{i \times dp \times \cos \alpha}
$$

Calculating life time

After calculating the rated life (L) using the above formulas, the life time can be calculated according to formula \underline{F} 5.9 when the number of strokes and times are fixed.

$$
\mathsf{F5.10}\qquad \qquad \mathsf{L}_{\mathsf{h}} = \frac{\mathsf{L} \times 10^3}{2 \times \mathsf{l}_{\mathsf{s}} \times \mathsf{n}_1 \times 60}
$$

 P_F Equivalent radial load [N]

- cos α Constant angle (FBR type: α = 70°) i 3 rows of steel balls under load for specification 20
- dp Ball center diameter [mm]
- Lh Life time [h]
- l_s Stroke length [m]
- n_1 Cycles per minute [min⁻¹]

5.2.2 Temperature coefficient f_T

When using a Ball Spline in operating temperatures exceeding 100 °C, multiply the temperature coefficient of [Fig. 5.9](#page-17-2) when calculating the life, taking into account the adverse effects caused by high temperatures. Also, note that it is necessary to use Ball Spline products suitable for high temperatures.

Note: In case of operating above 80°C, the material of the gasket and retainer must be changed to a material for the high-temperature specification accordingly.

Fig. 5.9 **Temperature coefficient f_T**

5.2.3 Contact coefficient fc

When multiple nuts are mounted closely and working in linear motion, it is difficult to get a uniform distribution of loads due to the moment load and mounting accuracy. Therefore when using multiple nuts closely, multiply the basic rated load (C) and (C_0) by corresponding contact coefficients in [Table 5.3.](#page-17-3)

Note: If the load is expected to be non-uniform in large installations, please refer to the contact coefficients in [Table 5.3](#page-17-3).

5.2.4 Load coefficient fw

Most machines will have vibration and shock during operation. Vibration is generated during high-speed movement. Shock is caused by frequent starting and stopping. It is very difficult to calculate all correctly. Therefore, when the actual load on the linear motion system is not available, or when the effects of velocity and vibration are significant, please divide the basic rated load (C) and (C_0) by the load coefficients obtained from experience in [Table 5.4.](#page-18-0)

5.2.5 Shape of the spline shaft cross-section

Fig. 5.10 **Diagram of the Ball Spline cross-section**

5.2.6 Shape of the hollow spline shaft cross-section

Nominal shaft diameter: 13mm or less

Fig. 5.11 **Diagram of the hollow Ball Spline cross-section**

Nominal shaft diameter: 16mm or more

Calculation methods

Unit: mm

 1] The groove valley diameter Ød must be the value where no groove is left after processing.

5.2.7 Calculating average load

If the load applied to the ball spline varies due to operating conditions that change over time, then these variable loads must be taken into account when calculating the life expectancy. A practical example of variable loads would be an industrial robot arm equipped with a ball spline that transports a work piece from the initial position to the target position, then deposits the work piece and returns to the starting position without payload. The average load (P_m) corresponds to a constant equivalent load under which the ball spline achieves the same nominal life as it would achieve under the actual variable loading conditions of the ball spline.

F 5.11
$$
P_m = \sqrt[3]{\frac{1}{L} \sqrt[3]{\frac{1}{L} \sqrt[3]{\frac{1}{L} \sqrt[3]{\frac{1}{L}}}} \left[P_n^3 \times L_n \right]}
$$

5.2.8 The case of step load

Fig. 5.12 **Diagram of average load in the case of step load**

- P_m Average load [N]
- P_n Variable load [N]
- L Total running distance [mm]
- L_n Distance travelling during P_n [mm]
- P_m Average load [N]
- P_n Variable load $[N]$
I Total running dist
- Total running distance [mm]
- L_n Distance travelling during P_n [mm]

- P Load [N]
- L Total running distance [mm]

5.2.9 The case of monotonic load fluctuation

L

Fig. 5.13 **Diagram of average load in the case of monotonic load fluctuation**

P_{min} Minimum load [N] P_{max} Maximum load [N]

- P Load [N]
- L Total running distance [mm]

 P_{min}

Fig. 5.15 **Diagram of average load for sinusoidal load fluctuation (see formula [F 5.15](#page-20-3))**

(see formula [F 5.14\)](#page-20-2)

Selecting preload

6. Selecting preload

The preload of the Ball Spline significantly influences accuracy and rigidity, so it is necessary to select the appropriate clearance (or preload) for the application. Clearance values are specified for each model number and can therefore be selected appropriately according to the conditions of use.

6.1 Preload and rigidity

Preload is a load applied to the ball beforehand to eliminate clearance in the rotation direction and improve rigidity. When preload is applied, the Ball Spline increases rigidity according to the strength of the preload. [Fig. 6.1](#page-21-2) shows the displacement in the direction of rotation when applying a rotational torsion.

As shown in [Fig. 6.1,](#page-21-2) the effect of preload is maintained up to 2.8 times the preload load. Compared with the time without preload, the displacement becomes one-half of the same torsion and the rigidity is more than 2 times.

Fig. 6.1 **Rotation angle over torsion**

6.2 Conditions and benchmarks for use in the selection of preload

[Table 6.1](#page-22-1) indicates the benchmarks for selection of clearance in the direction of rotation according to the conditions of use of the Ball Spline. Clearance in the direction of rotation of the Ball Spline significantly influences the accuracy or rigidity of the Ball Spline. Therefore, it is important to select the appropriate clearance according to the application. Generally, products with preload are used. There is a high vibration shock in the case of a repeated rotating motion or a reciprocating linear motion, so applying preload will significantly improve the rigidity and accuracy.

RS, FS and FSR types

7. RS, FS and FSR types

7.1 HIWIN order code for Ball Spline RS, FS and FSR types

7.2 Selecting accuracy

7.2.1 The grade of accuracy

The grade of accuracy of the Ball Spline is expressed in terms of oscillation of the outer diameter of the spline nut against the supporting part of the spline shaft. It is divided into normal (C), high (H) and precision (P) which are shown in [Fig. 7.1.](#page-24-1)

7.2.2 Accuracy indication

RS Type

Fig. 7.1 **Measurement items of the accuracy of RS type Ball Spline**

Unit: μm

RS, FS and FSR types

FS Type

Fig. 7.2 **Measurement items of the accuracy of FS type Ball Spline**

Table 7.3 **Runout accuracy of FS type Ball Spline**

Table 7.4 **Geometric accuracy of FS type Ball Spline**

FSR Type

Fig. 7.3 **Measurement items of the accuracy of FSR type Ball Spline**

Table 7.5 **Runout accuracy of FSR type Ball Spline**

Table 7.6 **Geometric accuracy of FSR type Ball Spline**

RS, FS and FSR types

7.3 Product dimensions and specifications

RS type

All dimensions stated without a unit are in mm

FS type

All dimensions stated without a unit are in mm

FBR and FBL types

8. FBR and FBL types

8.1 HIWIN order code for Ball Spline FBR and FBL types

8.2 Selecting accuracy

8.2.1 Accuracy specification

The compound Ball Spline consists of a ball screw nut and a Ball Spline nut, and is made according to the following specifications and inspected in accordance with [Fig. 8.1](#page-29-3) and [Table 8.1](#page-29-4).

Ball screw

Axial clearance: 0 Lead accuracy: C4 grade

Ball Spline

Clearance in the direction of rotation: 0 (light preload) Precision grade: H grade

Fig. 8.1 **Measurement items of the accuracy of Ball Screw Splines**

8.3 Product dimensions and specifications for compound Ball Spline

Table 8.2 **Product dimensions and specifications of nut type FB Ball Spline: ballscrew nut**

All dimensions stated without a unit are in mm

Options for Ball Spline

9. Options for Ball Spline

9.1 Lubrication

The lubrication varies depending on the conditions of use, but in general, the grease should be replenished at a running distance of 100 km (6 months–1 year). Lubricate the spline shaft by applying grease to the rolling groove or injecting grease into the nut lubrication hole, as shown in [Fig. 9.1.](#page-31-3)

Fig. 9.1 **Lubrication method**

9.2 Material and surface treatment

Depending on the conditions of use, the Ball Spline may be treated for rust prevention or be manufactured with different material. Please contact HIWIN for the rust prevention treatment and change of material used.

10. Function of FB type Ball Spline

10.1 FB type Ball Spline working mode

- l_ Ballscrew lead [mm]
-
- $-N_1$ Ballscrew pulley rotating speed (counter-clockwise) [min⁻¹]
-N₂ Ball spline pulley rotating speed (counter-clockwise) [min⁻¹] Ball spline pulley rotating speed (counter-clockwise) [min^{-1]}
- l Ballscrew lead [mm]
- N1 Ballscrew pulley rotating speed (clockwise) [min–1]
- N2 Ball spline pulley rotating speed (clockwise) [min–1]

HIWIN GmbH

Brücklesbünd 1 77654 Offenburg Deutschland Fon +49 781 93278-0 info@hiwin.de hiwin.de

All rights reserved. Complete or partial reproduction is not permitted without our permission.

Note: The technical data in this catalogue may be changed without prior notice.